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ABSTRACT  
Explainable AI (XAI) provides means to overcome this issue based on additional supplemental information 
regarding the results of Deep Learning (DL) algorithms. While full transparency remains infeasible for 
complex DL algorithms, explanations help the user to judge on AI information products in critical situations. 
It should be noted that XAI is an umbrella term for aspects of transparency, causality, trustworthiness, 
confidence, fairness, confidence, and privacy. Therefore, the underlying methodologies are manifold. An 
approach, which has become popular, is the Local Interpretable Model-Agnostic Explanations (LIME) 
method, since it can well be applied for different models in various applications. In this paper, the LIME 
algorithm is investigated in the context of decision proposal for strategic operations. After a brief 
introduction to its concept, applications from the literature are presented. Then, a strategic gaming scenario 
is considered as a surrogate environment for military warfare. A DL-based chess AI is made “explainable” 
in order to evaluate the value of information for a human decider. Conclusions with respect to strategic 
hybrid operations are drawn, which reflect the limitations of the proposed approach. 

INTRODUCTION 

It is envisioned that decisions in future strategic warfare will heavily be influenced by information products 
based on methods of Artificial Intelligence (AI). Hybrid operations, in particular, take place in a high 
dimensional and variational environment, in which the assessment of potential threats and opportunities are 
difficult to grasp for human operators and where strategic planning must incorporate heterogenous, versatile 
and high volume data sources. Therefore, algorithmically produced classifications, predictions and 
suggestions based on AI methods are becoming increasingly important in such complex scenarios. In the last 
few years, methods of AI have gained significant momentum with a large number of innovations and 
respectable results for obtaining higher level information from large data sets. A major drawback of Deep 
Learning (DL) approaches, however, is their inherent black-box property, that is, the opaqueness of its 
results due to the complexity of the computing model. The latter, for instance, can have hundreds of layers 
and millions of parameters, which are found and optimized algorithmically during the training phase. As a 
consequence, even if the results are exact, there is no chance for the user to either comprehend it nor to grasp 
the causal parts of the input data. This, in turn, can affect the trust of the user to assisting devices heavily in 
both directions. This issue plays a minor role in certain civil applications such as voice recognition for 
instance, which is often applied for interaction with devices, since there is no potential risk other than decent 
disappointment. For other, very specific tasks, such as hand written character recognition, the performance of 
DL algorithms is beyond the human average, which implies that failures are highly unlikely such that the 
question regarding causality might become subsidiary. However, in many military applications, human trust 
is a key issue when it comes to the interaction with AI, since wrong decisions might have severe 
consequences and the user always remains accountable. This actually is two-fold. On the one hand, the 
operator often needs to understand the background of AI products, in particular, if those are against his or her 
own instincts. On the other hand, incomprehensible technology can create a bias towards algorithmic 
information products since it is hard to determine under which conditions it fails. Thus, the appropriate level 
of trust can be hard to figure. 
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Explainable AI (XAI) is the collections of approaches to provide “transparency”, “interpretability”, or 
“explainability” to the user of a black-box AI model. A joint definition for those terms is hardly available, 
but many publications refer to 

• transparency as the degree of possible comprehension for a human to track and understand the 
process of model creation. That is the information extraction from the data into the manifestation of 
parameters for inference. A DL feed-forward network lacks this property due to its iterative learning 
process based on large data sets and the recursive propagation of errors to individual layers. 

• interpretability as the degree of comprehension of the model itself such that the information flow 
from input data to the prediction result can be understood. This is infeasible for standard networks 
due to the number of parameters involved and the hierarchical structure of the layers. 

• explainability as the degree of possibility to elucidate on a specific prediction result. That is, the 
coherence to the input data is made visible to the user and to some extent one can see whether a 
causal relation exists. 

XAI cannot “explain” a DL model in its full extent, however, it provides means for the engineer or the 
operator to better understand the causality behind a given AI product. And quite often this can help to see, 
whether the model is sensible (or not) in the sense that a reasonable chain of causality implied the 
algorithmic decision or prediction. Therefore XAI can be an important tool for the engineering of AI models, 
for their validation with respect to safety or even for in certification processes as well as for providing 
additional information to an operator in order to support well informed decisions.  

While most publications in the literature on XAI are focused on methods for image recognition, such results 
are difficult to transform onto the domain of tactical and strategic decision making based on a given 
challenging competitive situation. In this paper, we investigate explainability for AI models for a chess board 
evaluation. Some implications on more complex military strategic simulations are discussed.  

This paper is structured as follows. In the next section, a brief overview of selected XAI methods is 
provided. Then, one of those methods (LIME) is applied to the problem of chess board evaluation to 
demonstrate the quality of the explanation in terms of supporting information. In the last section, conclusions 
are drawn and a generalization to more complex war gaming and simulation is discussed. 

METHODS OF XAI 

In this section, a selection of relevant methods in the wide research field of XAI is presented. We limit 
ourselves to approaches for uncertainty estimation by means of Bayesian Deep Learning and two model 
agnostic explanation methods (LIME and RISE), since those are considered1 to be the most important for AI-
based assistance systems in hybrid military operations. In particular, the fact that those are model agnostic 
makes them flexible in general and particular important for military applications. 

BAYESIAN DEEP LEARNING (BDL) 
Bayesian DL networks refer to a family of architectures, which are able to estimate the uncertainty of the AI 
result. There are different types of uncertainty (epistemic and aleatoric) and even more approaches to 
estimate them from the data: 

• By an application of the Bayes theorem, one can estimate the posterior distribution for the 
prediction. To this end, it is required to either have a good model on the epistemic uncertainty in the 
data (in terms of a likelihood function) or to have a joint optimization process within the training 

                                                      
1 By the humble author’s opinion. 
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step. The latter can easily be achieved by including the data variance in the loss function as a 
negative log-normal likelihood density. Instead  of  the standard loss function for regression given 

by , the negative log-likelihood of the normal density yields . By 
optimizing the prediction error and the variance at the same time, a consistent model is obtained 
and can be used for the Bayes update step.  

• Gaussian Processes can be used in order to replace fixed weights of a trained model by a normal 
probability density functions (pdf), which are propagated through the network by means of the linear 
and non-linear transformations. To this end, the non-linear transformations are approximated in 
terms of sufficient statistics (mean and variance) such that the resulting normal distribution can be 
inferred. As a result, the variance of the prediction can be obtained from the posterior distribution at 
the output layer [3]. 

• Another approach to capture the uncertainty of a model is to use stochastic dropout for Bayesian 
learning [4]. Usually, dropout is a method for regularization, that is, to avoid overfitting of the 
model and enhance generalization. In the stochastic context, it is applied in order to obtain a set of 
different models, which in total are a Monte-Carlo representation of the uncertainty. The squared 
distances of the predictions of each of the model to the joint result can be used in order to calculate 
the variance. 

 

 
Figure 1: Example of a Bayesian DL for the depth estimation (middle) of scene (left). The back window of the 
red car is associatted to the wrong depth. However, the varaince estimate (right) indicates that the network is 
aware of the uncertainty in this area (red field). Picture and example are from [2]. 

LOCAL INTERPRETABLE MODEL-AGNOSTIC EXPLANATION (LIME) 
The LIME approach [5] has become quite popular due to the fact that it’s model agnostic, quite efficient and 
easy to implement. It’s an representative of the class of Local Surrogate Models, where the (non-linear) 
black-box model is locally2 approximated by a direct interpretable model. The latter can be for instance a 
linear regression, logistic regression, a decision tree, or a Support Vector Machine (SVM) since those 
algorithms directly yield correlations or decision thresholds which indicate the relevance between input 
parameters and the computed output result. The approximation itself is achieved by a weighted sampling of 
data points within a neighboring region. Corresponding labels are created by the black-box model such that a 
local training data set is obtained to feed the surrogate model. Even the choice of the surrogate model can be 
automated by an application of all valid candidates and choosing the one with the lowest loss function score. 
This concept of local approximation of a non-linear black-box model is shown in Figure 2, which is taken 
from [5]. 

                                                      
2 „Locally“ means, that the surrogate model only approximates the original model in a neighboring region around a given 

sampling point. 
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Figure 2: Local approximation of a non-linear binary classifier (red/blue regions) by a linear 
surrogate model (dashed line) around a given sampling point (red cross) [5]. 

The saliency of the relevant features in pictures is aggregated in so-called super-pixels, such that the relevant 
parts of an image can be shown to the engineer or user. An example is given for Google’s Inception network 
in Figure 3, also from the LIME paper [5]: 

 

Figure 3: Explanation of the most relevant classes in terms of super-pixels for the input image 
(left) with increasing relevance from left to right [5]. 

RANDOMIZED INPUT SAMPLING FOR EXPLANATION (RISE) 
The RISE method [6] is similar to LIME, since also stochastic sampling in a local region is used to provide 
an explanation of an AI result. However, there are differences in the details such that instead of local points 
RISE uses randomly created masks to blank parts of the input image. The partly obscured images are then 
fed to the black-box model to obtain the weights for each class. As a consequence, a saliency map (heat map) 
can be computed as a weighted sum of the stochastic masks such that the relevant parts with respect to a 
given class are highlighted. An example from [6] is shown in Figure 4. 
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Figure 4: Example saliency map computed from the RISE method to explain the class "sheep" 
(middle) and "cow" (right) of the input image (left) [6]. 

NUMERICAL APPLICATION EXAMPLE: EVALUATION OF A CHESS BOARD 

In this section, the application of XAI is demonstrated in a proxy chess gaming scenario. Due to its tactical 
and strategical components, chess is close to hybrid warfare, though of course the dimensionality of the 
action space is highly reduced. Thus, even though a hybrid warfare scenario is much more complex, some of 
the information quality provided by XAI could be transferred on an abstract level.  

It is well-known that Monte-Carlo chess engines as well as DL methods based on Markov Decision 
Processes (MDP) can be superior to human players even on expert level. However, in highly critical 
applications where human lives might be at stake, the sole recommendation for the next tactical move can be 
insufficient in order to guarantee meaningful human control, that is the proper exposition of information to 
ensure accountability, moral responsibility, and controllability for the operator. Therefore, supplemental 
information is required. XAI provides the necessary means in this case. Though full transparency cannot be 
achieved, insights for the operator regarding the estimated error variance and the most relevant data features 
are crucial in critical scenarios. As described in the previous section, various approaches such as BDL and 
algorithmic feature explanations exist and can be applied.  

As a reduced simulative example, a chess game situation is considered. To this end, a fully connected multi 
layer perceptron3 was trained on a large chess dataset such that it was able to compete with a standard chess 
engine [7]. Afterwards, a chess game was stopped after 60 moves with quite even chances on both sides (see 
the board in Figure 6). The recommendation of the AI engine was now to move the white bishop from e2 to 
b5, which is a bit offensive. The reason for the recommendation can be revealed by the LIME approach, 
which indicates the top-relevant features in the data space. In particular, the top attacking moves from black 
could be extracted as shown in Figure 5.  

 
Figure 5: Top 3 attacking moves from the opponent revealed by XAI (n = knight, b = bishop, r = rook). 

                                                      
3 In our simulations, we used a 12-layer network. 
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The experienced chess player will of course directly see this. In a strategic hybrid military operation, the 
options might be less obvious, but the methodology can be applied, too.  

 
Figure 6: Chess board after 60 moves where the XAI information was evaluated. 

CONCLUSION 

In this paper, we have revisited the some of the relevant methods of Explainable AI to provide supplemental 
information in hybrid military operations. Those include approaches to compute the error variance of a 
computed AI product as well as algorithms for obtaining some degree of transparency by a calculation of the 
most relevant features in the data space with respect to the outcome of the AI. Though real war (gaming) 
scenarios are much more complex than chess, the game was used to demonstrate an illustrious example of 
XAI to a tactical scene on a fixed board. As one can see in the example, the methods are well able to 
automatically indicate the most relevant possible moves by the opponent. Though this scenario is absolutely 
not challenging for chess experts, it demonstrates that the approach can be applied with abstract tactical data. 
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